Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 337: 114260, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933747

RESUMO

mHypoA-55 cells are kisspeptin-expressing neuronal cells originating from the arcuate nucleus of the mouse hypothalamus. These cells are called KNDy neurons because they co-express kisspeptin, neurokinin B, and dynorphin A. In addition, they express gonadotropin-releasing hormone (GnRH). Here, we found that kisspeptin 10 (KP10) increased Kiss-1 (encoding kisspeptin) and GnRH gene expression in kisspeptin receptor (Kiss-1R)-overexpressing mHypoA-55 cells. KP10 greatly increased serum response element (SRE) promoter activity, which is a target of extracellular signal-regulated kinase (ERK) (20.0 ± 2.54-fold). KP10 also increased cAMP-response element (CRE) promoter activity in these cells (2.32 ± 0.36-fold). KP10-increased SRE promoter activity was significantly prevented in the presence of PD098095, a MEK kinase (MEKK) inhibitor, and KP10-induced CRE promoter activity was also inhibited by PD098059. Similarly, H89, a protein kinase A (PKA) inhibitor, significantly inhibited the KP10 induction of SRE and CRE promoters. KP10-induced Kiss-1 and GnRH gene expressions were inhibited in the presence of PD098059. Likewise, H89 significantly inhibited the KP10-induced increase in Kiss-1 and GnRH. Transfection of mHypoA-55 cells with constitutively active MEKK (pFC-MEKK) increased SRE and CRE promoter activities by 9.75 ± 1.77- and 1.36 ± 0.12-fold, respectively. Induction of constitutively active PKA (pFC-PKA) also increased SRE and CRE promoter activities by 2.41 ± 0.42- and 40.71 ± 7.77-fold, respectively. Furthermore, pFC-MEKK and -PKA transfection of mHypoA-55 cells increased both Kiss-1 and GnRH gene expression. Our current observations suggest that KP10 increases both the ERK and PKA pathways and that both pathways mutually interact in mHypoA-55 hypothalamic cells. Activation of both ERK and PKA signaling might be necessary to induce Kiss-1 and GnRH gene expressions.


Assuntos
Hormônio Liberador de Gonadotropina , Kisspeptinas , Animais , Camundongos , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Transdução de Sinais
2.
J Gastroenterol Hepatol ; 38(3): 378-385, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36533997

RESUMO

Since the discovery of apoptosis signal-regulated kinase 1 (ASK1), the signal transduction mechanism and pathophysiological process involved in its regulation have been continuously revealed. Many previous studies have identified that ASK1 is involved and plays a critical role in the development of diseases affecting the nervous, cardiac, renal, and other systems. As a mitogen-activated protein kinase (MAPK) kinase kinase, ASK1 mediates apoptosis, necrosis, inflammation, and other pathological processes by activating its downstream c-Jun N-terminal kinase (JNK)/p38 MAPK. Owing to the important role of ASK1, an increasing number of studies in recent years have focused on its status in liver-related diseases. In this paper, we review the mechanisms and targets of ASK1 in liver-related diseases to emphasize its important role in the development of liver disease.


Assuntos
Procedimentos Clínicos , Hepatopatias , Humanos , Transdução de Sinais/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/fisiologia , MAP Quinase Quinase Quinases/metabolismo
3.
Phytother Res ; 37(3): 860-871, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36420902

RESUMO

Obesity-induced cardiomyopathy (OIC) is an increasingly serious global disease caused by obesity. Chronic inflammation greatly contributes to the pathogenesis of OIC. This study aimed to explore the role and mechanism of tabersonine (Tab), a natural alkaloid with antiinflammatory activity, in the treatment of OIC. High fat diet (HFD)-induced obese mice were administered with Tab. The results showed that Tab significantly inhibit inflammation, myocardial fibrosis, and hypertrophy to prevent heart dysfunction, without the alteration of body weight and hyperlipidemia, in HFD-induced obese mice. H9c2 cells and primary cardiomyocytes stimulated by palmitic acid (PA) were used to explore the molecular mechanism and target of Tab. We examined the effect of Tab on key proteins involved in HFD/PA-induced inflammatory signaling pathway and found that Tab significantly inhibits TAK1 phosphorylation in cardiomyocytes. We further detected the direct interaction between Tab and TAK1 at the cellular, animal, and molecular levels. We found that Tab directly binds to TAK1 to inhibit TAK1 phosphorylation, which then blocks TAK1-TAB2 interaction and then NF-κB pro-inflammatory pathway in cultured cardiomyocytes. Our results indicate that Tab is a potential agent for the treatment of OIC, and TAK1 is an effective therapeutic target for this disease.


Assuntos
Inflamação , MAP Quinase Quinase Quinases , Camundongos , Animais , Camundongos Obesos , MAP Quinase Quinase Quinases/metabolismo , Fatores de Crescimento Transformadores , Obesidade
4.
Phytother Res ; 37(5): 1839-1849, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36512326

RESUMO

Salidroside, a prominent active ingredient in traditional Chinese medicines, is garnering increased attention because of its unique pharmacological effects against ischemic heart disease via MAPK signaling, which plays a critical role in regulating the evolution of ventricular hypertrophy. However, the function of Salidroside on myocardial hypertrophy has not yet been elucidated. C57BL/6 mice were subjected to transverse aortic constriction (TAC), and treated with Salidroside (100 mg kg-1  day-1 ) by oral gavage for 3 weeks starting 1 week after surgery. Four weeks after TAC surgery, the mice were subjected to echocardiography and then sacrificed to harvest the hearts for analysis. For in vitro study, neonatal rat cardiomyocytes were used to validate the protective effects of Salidroside in response to Angiotensin II (Ang II, 1 µM) stimulation. Here, we proved that Salidroside dramatically inhibited hypertrophic reactions generated by pressure overload and isoproterenol (ISO) injection. Salidroside prevented the activation of the TAK1-JNK/p38 axis. Salidroside pretreatment of TAK1-inhibited cardiomyocytes shows no additional attenuation of Ang II-induced cardiomyocytes hypertrophy and signaling pathway activation. The overexpression of constitutively active TAK1 removed the protective effects of Salidroside on myocardial hypertrophy. TAC-induced increase of TLR4 protein expression was reduced considerably in the Salidroside treated mice. Transient transfection of small interfering RNA targeting TLR4 (siTLR4) in cardiomyocytes did not further decrease the activation of the TAK1/JNK-p38 axis. In conclusion, Salidroside functioned as a TLR4 inhibitor and displayed anti-hypertrophic action via the TAK1/JNK-p38 pathway.


Assuntos
Estenose da Valva Aórtica , Cardiomegalia , Receptor 4 Toll-Like , Animais , Camundongos , Ratos , Estenose da Valva Aórtica/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Modelos Animais de Doenças , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/farmacologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
5.
Phytomedicine ; 108: 154523, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332385

RESUMO

BACKGROUND: Chronic and persistent obesity can lead to various complications, including obesity cardiomyopathy. Inhibition of the inflammatory response is an effective measure for the intervention of obesity cardiomyopathy. Numerous studies indicate that costunolide (Cos) can reduce inflammation. However, the role of Cos in obesity cardiomyopathy and its molecular targets remains unknown. HYPOTHESIS/PURPOSE: We aimed to clarify potential cardioprotective effects and mechanism of Cos against obesity cardiomyopathy. METHODS: The model of obesity cardiomyopathy was established by feeding mice with a high-fat diet for 24 weeks. Cos at 10 and 20 mg/kg or vehicle (1% CMCNa solution) was administered once every two days via oral gavage from the 17th to 24th week. Body weight, heart weight/tibia length, cardiac function, myocardial injury markers, pathological morphology of the heart, hypertrophic and fibrotic markers, inflammatory factors were assessed. The targets of Cos were predicted through molecular docking. Pull-down assay and biolayer interferometry were used to confirm the target of Cos. RESULTS: Cos effectively reduces obesity-induced cardiomyocyte inflammation, cardiac hypertrophy and fibrosis, thereby improving cardiac function. We confirmed that Cos can interact with TAK1 and inhibit downstream NF-κB pathway activation by blocking the formation of the TAK1/TAB2 complex, thus inhibiting inflammatory cytokine release in cardiomyocytes. CONCLUSION: Our results demonstrated that Cos significantly improved myocardial remodeling and cardiac dysfunction against obesity cardiomyopathy by reducing myocardial inflammation. Therefore, Cos may serve as a promising therapeutic agent in obesity cardiomyopathy.


Assuntos
Cardiomiopatias , NF-kappa B , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Inflamação/patologia , MAP Quinase Quinase Quinases/metabolismo , Simulação de Acoplamento Molecular , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico , Transdução de Sinais
6.
Phytomedicine ; 103: 154238, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696800

RESUMO

BACKGROUND: Angiotensin II (Ang II)-induced cardiac inflammation contribute to pathological cardiac remodeling and hypertensive heart failure (HF). Tabersonine (Tab) is an indole alkaloid mainly isolated from Catharanthus roseus and exhibits anti-inflammatory activity in various systems. However, the role of Tab in hypertensive HF and its molecular targets remains unknown. HYPOTHESIS/PURPOSE: We aimed to investigate potential cardioprotective effects and mechanism of Tab against Ang II-induced cardiac injuries. METHODS: C57BL/6 mice were administered Ang II (at 1000 ng/kg/min) by micro-osmotic pump infusion for 30 days to develop hypertensive HF. Tab at 20 and 40 mg/kg/day was administered during the last 2 weeks to elucidate the cardioprotective properties. Cultured cardiomyocyte-like H9c2 cells and rat primary cardiomyocytes were used for mechanistic studies of Tab. RESULTS: We demonstrate for the first time that Tab provides protection against Ang II-induced cardiac dysfunction in mice, associated with reduced cardiac inflammation and fibrosis. Mechanistically, we show that Tab may interacts with TAK1 to inhibit Ang II-induced TAK1 ubiquitination and phosphorylation. Disruption of TAK1 activation by Tab blocked downstream NF-κB and JNK/P38 MAPK signaling activation and decreased cardiac inflammation and fibrosis both in vitro and in vivo. TAK1 knockdown also blocked Ang II-induced cardiomyocytes injuries and prevented the innately pharmacological effects of Tab. CONCLUSION: Our results indicate that Tab protects hearts against Ang II-mediated injuries through targeting TAK1 and inhibiting TAK1-mediated inflammatory cascade and response. Thus, Tab may be a potential therapeutic candidate for hypertensive HF.


Assuntos
Angiotensina II , Insuficiência Cardíaca , MAP Quinase Quinase Quinases/metabolismo , Angiotensina II/farmacologia , Animais , Cardiomegalia/induzido quimicamente , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Alcaloides Indólicos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Quinolinas , Ratos , Transdução de Sinais , Remodelação Ventricular
7.
Molecules ; 26(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641616

RESUMO

Several Cissus species have been used and reported to possess medicinal benefits. However, the anti-inflammatory mechanisms of Cissus subtetragona have not been described. In this study, we examined the potential anti-inflammatory effects of C. subtetragona ethanol extract (Cs-EE) in vitro and in vivo, and investigated its molecular mechanism as well as its flavonoid content. Lipopolysaccharide (LPS)-induced macrophage-like RAW264.7 cells and primary macrophages as well as LPS-induced acute lung injury (ALI) and HCl/EtOH-induced acute gastritis mouse models were utilized. Luciferase assays, immunoblotting analyses, overexpression strategies, and cellular thermal shift assay (CETSA) were performed to identify the molecular mechanisms and targets of Cs-EE. Cs-EE concentration-dependently reduced the secretion of NO and PGE2, inhibited the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells, and decreased NF-κB- and AP-1-luciferase activity. Subsequently, we determined that Cs-EE decreased the phosphorylation events of NF-κB and AP-1 pathways. Cs-EE treatment also significantly ameliorated the inflammatory symptoms of HCl/EtOH-induced acute gastritis and LPS-induced ALI mouse models. Overexpression of HA-Src and HA-TAK1 along with CETSA experiments validated that inhibited inflammatory responses are the outcome of attenuation of Src and TAK1 activation. Taken together, these findings suggest that Cs-EE could be utilized as an anti-inflammatory remedy especially targeting against gastritis and acute lung injury by attenuating the activities of Src and TAK1.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/administração & dosagem , Cissus/química , Etanol/efeitos adversos , Gastrite/tratamento farmacológico , Ácido Clorídrico/efeitos adversos , Lipopolissacarídeos/efeitos adversos , Macrófagos/citologia , Polifenóis/administração & dosagem , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Administração Oral , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Citocinas/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Gastrite/induzido quimicamente , Gastrite/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Extratos Vegetais/química , Polifenóis/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Quinases da Família src/genética
8.
J Pharm Pharmacol ; 73(10): 1319-1329, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34313776

RESUMO

OBJECTIVES: Acute lung injury (ALI) is a pulmonary manifestation of an acute systemic inflammatory response, which is associated with high morbidity and mortality. Accordingly, from the perspective of treating ALI, it is important to identify effective agents and elucidate the underlying modulatory mechanisms. ß-Caryophyllene (BCP) is a naturally occurring bicyclic sesquiterpene that has anti-cancer and anti-inflammatory activities. However, the effects of BCP on ALI have yet to be ascertained. METHODS: ALI was induced intratracheally, injected with 5 mg/kg LPS and treated with BCP. The bone marrow-derived macrophages (BMDMs) were obtained and cultured then challenged with 100 ng/ml LPS for 4 h, with or without BCP pre-treatment for 30 min. KEY FINDINGS: BCP significantly ameliorates LPS-induced mouse ALI, which is related to an alleviation of neutrophil infiltration and reduction in cytokine production. In vitro, BCP was found to reduce the expression of interleukin-6, interleukin-1ß and tumour necrosis factor-α, and suppresses the MAPK signalling pathway in BMDMs, which is associated with the inhibition of TAK1 phosphorylation and an enhancement of MKP-1 expression. CONCLUSIONS: Our data indicate that BCP protects against inflammatory responses and is a potential therapeutic agent for the treatment of LPS-induced acute lung injury.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sesquiterpenos Policíclicos/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/prevenção & controle , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Citocinas/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fitoterapia , Extratos Vegetais/uso terapêutico , Sesquiterpenos Policíclicos/uso terapêutico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
9.
J Ethnopharmacol ; 279: 114400, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34245837

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Saururus chinensis (Lour.) Baill (Saururaceae), also known as Asian lizard's tail, is a plant commonly found in East Asia. Its leaves have been used in traditional medicine to treat many diseases such as edema, pneumonia, hypertension, leproma, jaundice, gonorrhea, and rheumatoid arthritis. AIM OF THE STUDY: Based on the efficacies of S. chinensis, the anti-inflammatory effects of this plant and the molecular mechanism were evaluated using the ethanol extract of S. chinensis leaves (Sc-EE). MATERIALS AND METHODS: The production of pro-inflammatory mediators and cytokines in response to Sc-EE was evaluated using Griess and semi-quantitative reverse transcription-polymerase chain reactions. Furthermore, relevant proteins including c-Jun, c-Fos, p38, JNK, ERK, MEK1/2, MKK3/6, MKK4/7, and TAK1 were detected through immunoblotting. RESULTS: Sc-EE diminished production of nitric oxide (NO); decreased expression levels of cyclooxygenase (COX)-2, interleukin (IL)-6, inducible NO synthase (iNOS), and IL-1ß in LPS-stimulated RAW264.7 cells; and attenuated activator protein 1 (AP-1)-mediated luciferase activities. The extract markedly downregulated the phosphorylation of TAK1, upregulated thermal stability of TAK1, and reduced TAK1/AP-1-mediated luciferase activity in LPS-treated RAW264.7 cells and TAK1-overexpressing HEK293T cells. CONCLUSIONS: These results demonstrated that Sc-EE suppresses pro-inflammatory gene expression through blockade of the TAK1/AP-1 pathway in LPS-treated RAW264.7 macrophages, implying that inhibition of TAK1/AP-1 signaling by S. chinensis is a key event in its anti-inflammatory activity.


Assuntos
Anti-Inflamatórios/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Extratos Vegetais/farmacologia , Fator de Transcrição AP-1/metabolismo , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/genética , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição AP-1/genética
10.
Phytomedicine ; 88: 153609, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34126414

RESUMO

BACKGROUD: Schisandra chinensis, a traditional Chinese medicine for liver protection, can significantly improve liver fibrosis. However, it is still unclear which active components in Schisandra chinensis play an anti-fibrosis role. PURPOSE: The purpose of present study was to observe the anti-fibrosis effect of schisantherin A (SCA) on liver fibrosis and explore its underlying mechanism. METHODS: The liver fibrosis model of mice was constructed by the progressive intraperitoneal injection of thioacetamide (TAA), and SCA (1, 2, and 4 mg/kg) was administered by gavage for 5 weeks. The biochemical indicators and inflammatory cytokines were measured, changes in the pathology of the mice liver were observed by hematoxylin & eosin (H&E) and Masson stainings for studying the anti-fibrosis effect of SCA. A hepatic stellate cell (HSCs) activation model induced by transforming growth factor-ß1 (TGF-ß1) was established, and the effect of SCA on the HSCs proliferation was observed by MTT assay. The expressions of target proteins related to transforming growth factor-ß-activated kinase 1 (TAK1)/mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways were evaluated by western blotting, immunohistochemistry or immunofluorescence analysis, to explore the potential mechanism of SCA. RESULTS: SCA could significantly ameliorate the pathological changes of liver tissue induced by TAA, and reduce the serum transaminase level, the hydroxyproline level and the expression of α-smooth muscle actin (α-SMA) and collagen 1A1 (COL1A1) proteins in the liver tissue. SCA could significantly lower the levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) in the serum and liver tissue, and down-regulate the expression of target proteins related to TAK1/MAPK and NF-κB pathways in the liver tissue. The in vitro studies demonstrated that SCA significantly inhibited the proliferation and activation of HCS-T6 cells induced by TGF-ß1, decreased TNF-α and IL-6 levels, and inhibited the TAK1 activation induced by TGF-ß1 and then the expression of MAPK and NF-κB signaling pathway-related proteins. CONCLUSION: Together, SCA can ameliorate the liver fibrosis induced by TAA and the HSC-T6 cell activation induced by TGF-ß1 in mice, and its mechanism may be to inhibit the HSCs activation and inflammatory response by inhibiting TGF-ß1 mediated TAK1/MAPK and signal pathways.


Assuntos
Ciclo-Octanos/farmacologia , Dioxóis/farmacologia , Lignanas/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/patologia , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Tioacetamida/toxicidade
11.
J Ethnopharmacol ; 274: 114078, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33798659

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xinyang tablet (XYT) has been traditionally used in the treatment of cardiovascular diseases (CVDs). Our previous study indicated that XYT exhibited protective effects in heart failure (HF). AIM OF THE STUDY: The aim of the present study was to determine the protective effects of XYT in pressure overload induced HF and to elucidate its underlying mechanisms of action. MATERIALS AND METHODS: We analyzed XYT content using high-performance liquid chromatography (HPLC.). Mice were subjected to transverse aortic constriction (TAC) to generate pressure overload-induced cardiac remodeling and were then orally administered XYT or URMC-099 for 1 week after the operation. HL1 mouse cardiomyoblasts were induced by lipopolysaccharides (LPS) to trigger pyroptosis and were then treated with XYT or URMC-099. We used echocardiography (ECG), hematoxylin and eosin (H&E) staining, Masson's trichrome staining and a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay to evaluate the effects of XYT. Messenger ribonucleic acid (mRNA) levels of collagen metabolism biomarkers and inflammation-related factors were detected. We determined protein levels of inflammation- and pyroptosis-related signaling pathway members via Western blot (WB). Caspase-1 activity was measured in cell lysate using a Caspase-1 Activity Assay Kit. Subsequently, to define the candidate ingredients in XYT that regulate mixed-lineage kinase-3 (MLK3), we used molecular docking (MD) to predict and evaluate binding affinity with MLK3. Finally, we screened 24 active potential compounds that regulate MLK3 via MD. RESULTS: ECG, H&E staining, Masson's trichrome staining and TUNEL assay results showed that XYT remarkably improved heart function, amelorated myocardial fibrosis and inhibited apoptosis in vivo. Moreover, it reduced expression of proteins or mRNAs related to collagen metabolism, including collagen type 1 (COL1), fibronectin (FN), alpha smooth-muscle actin (α-SMA), and matrix metalloproteinases-2 and -9 (MMP-2, MMP-9). XYT also inhibited inflammation and the induction of pyroptosis at an early stage, as well as attenuated inflammation and pyroptosis levels in vitro. CONCLUSION: Our data indicated that XYT exerted protective effects against pressure overload induced myocardial fibrosis (MF), which might be associated with the induction of pyroptosis-mediated MLK3 signaling.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cardiomegalia/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , MAP Quinase Quinase Quinases/metabolismo , Piroptose/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Pressão Sanguínea , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Ecocardiografia , Fibrose , Coração/efeitos dos fármacos , Coração/fisiologia , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Lipopolissacarídeos , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/patologia , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
12.
Molecules ; 26(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799767

RESUMO

Possessing a variety of medicinal functions, Olea europaea L. is widely cultivated across the world. However, the anti-inflammatory mechanism of Olea europaea is not yet fully elucidated. In this study, how the methanol extract of the leaves of Olea europaea (Oe-ME) can suppress in vitro inflammatory responses was examined in terms of the identification of the target protein. RAW264.7 and HEK293T cells were used to study macrophage-mediated inflammatory responses and to validate the target protein using PCR, immunoblotting, nuclear fraction, overexpression, and cellular thermal shift assay (CETSA) under fixed conditions. Oe-ME treatment inhibited the mRNA expression levels of cyclooxygenase (COX)-2, matrix metallopeptidase (MMP)-9, and intercellular adhesion molecule-1 (ICAM-1) in activated RAW264.7 cells. Oe-ME diminished the activation of activator protein (AP)-1 and the phosphorylation of its upstream signaling cascades, including extracellular signal regulated kinase (ERK), mitogen-activated protein kinase kinase 1/2 (MEK1/2), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 3/6 (MKK3/6), p38, MKK7, and transforming growth factor-ß-activated kinase 1 (TAK1), in stimulated-RAW264.7 cells. Overexpression and CETSA were carried out to verify that TAK1 is the target of Oe-ME. Our results suggest that the anti-inflammatory effect of Oe-ME could be attributed to its control of posttranslational modification and transcription of TAK1.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Macrófagos/efeitos dos fármacos , Olea/metabolismo , Animais , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinases/fisiologia , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo
13.
J Ethnopharmacol ; 273: 113989, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33677006

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Glycyrrhiza glabra L., a traditional medicinal, has a history of thousands of years. It is widely used in clinic and has been listed in Chinese Pharmacopoeia. Licochalcone A is a phenolic chalcone compound and a characteristic chalcone of Glycyrrhiza glabra L. It has many pharmacological activities, such as anti-cancer, anti-inflammatory, anti-viral and anti-angiogenic activities. AIM OF THE STUDY: In this study, we explored the anti-tumor activity and potential mechanism of licochalcone A in vitro and in vivo. MATERIALS AND METHODS: In vitro, the mechanism of licochalcone A at inhibiting PD-L1 expression was investigated by molecular docking, western blotting, RT-PCR, flow cytometry, immunofluorescence and immunoprecipitation assays. The co-culture model of T cells and tumor cells was used to detect the activity of cytotoxic T lymphocytes. Colony formation, EdU labelling and apoptosis assays were used to detect changes in cellular proliferation and apoptosis. In vivo, anti-tumor activity of licochalcone A was assessed in a xenograft model of HCT116 cells. RESULTS: In the present study, we found that licochalcone A suppressed the expression of programmed cell death ligand-1 (PD-L1), which plays a key role in regulating the immune response. In addition, licochalcone A inhibited the expressions of p65 and Ras. Immunoprecipitation experiment showed that licochalcone A suppressed the expression of PD-L1 by blocking the interaction between p65 and Ras. In the co-culture model of T cells and tumor cells, licochalcone A pretreatment enhanced the activity of cytotoxic T lymphocytes and restored the ability to kill tumor cells. In addition, we showed that licochalcone A inhibited cell proliferation and promoted cell apoptosis by targeting PD-L1. In vivo xenograft assay confirmed that licochalcone A inhibited the growth of tumor xenografts. CONCLUSION: In general, these results reveal the previously unknown properties of licochalcone A and provide new insights into the anticancer mechanism of this compound.


Assuntos
Antígeno B7-H1/metabolismo , Proliferação de Células/efeitos dos fármacos , Chalconas/farmacologia , Neoplasias do Colo/tratamento farmacológico , NF-kappa B/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Antígeno B7-H1/genética , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Nus , NF-kappa B/genética , Neoplasias Experimentais , Linfócitos T/fisiologia , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
14.
Biomed Pharmacother ; 135: 111197, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33433362

RESUMO

Prostatitis, defined as a pathological inflammatory change in the prostate tissue, is one of the most prevalent urological conditions in men. However, optimal management of prostatitis remains unclear, and treatment outcomes are unsatisfactory owing to adverse effects. Carica papaya leaf extract (PAL) is known for its antioxidant, immunomodulatory, and anticancer properties; however, evidence of its anti-inflammatory effect in prostatic tissues remains elusive. In this study, the therapeutic effects and underlying molecular mechanisms of PAL in mice with experimental autoimmune prostatitis (EAP) and a prostatic cell line (RWPE-1 cells) exposed to inflammatory conditioned medium were investigated. PAL suppressed pathological alterations in EAP and markedly reduced prostate weight in EAP mice. Histological analysis revealed that PAL alleviates prostatic hyperplasia. Furthermore, PAL significantly reduced cyclooxygenase-2 mRNA and protein expression; production of inflammatory cytokines, including interleukin-6, tumor necrosis factor-α, and transforming growth factor-ß; and TRAF6/TAK1/MEK/ERK and NF-κB pathway-related protein expression. TRAF6/TAK1/MEK/ERK and NF-κB pathway-related proteins were upregulated in inflammatory conditioned medium-stimulated RWPE-1 cells, but PAL reduced the expression of these markers. Particularly, PAL treatment suppressed the nuclear translocation of NF-κB p65 and phosphorylation of p65 in RWPE-1 cells exposed to the inflammatory conditioned medium. Collectively, the results demonstrate the anti-proliferative and anti-inflammatory effects of PAL in the experimental prostatitis model, which highlights the potential of PAL as a new therapeutic agent in the treatment of prostatic disease.


Assuntos
Anti-Inflamatórios/farmacologia , Carica , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Próstata/efeitos dos fármacos , Hiperplasia Prostática/prevenção & controle , Prostatite/tratamento farmacológico , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Carica/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Finasterida/farmacologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Próstata/enzimologia , Próstata/patologia , Hiperplasia Prostática/enzimologia , Hiperplasia Prostática/patologia , Prostatite/enzimologia , Prostatite/patologia , Ratos Wistar , Transdução de Sinais
15.
Phytomedicine ; 82: 153441, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33387968

RESUMO

BACKGROUND: Oxidative stress induces mitochondrial dysfunction, causing memory loss. Long noncoding RNAs influence mitochondrial function and suppress oxidative stress by regulating target protein expression and gene transcription. Celastrol, a natural antioxidant extracted from Tripterygium wilfordii Hook F. ("Thunder of God Vine"), effectively alleviates oxidative stress-mediated tissue injury. In the present study, we examined the effects of celastrol on memory dysfunction induced by ischemia/reperfusion (I/R) and elucidated the mechanisms underlying these effects. METHODS: C57BL/6 mice were used to mimic I/R using the bilateral common carotid clip reperfusion method, and a hippocampal cell line (HT-22) cells were used to establish a model of oxygen-glucose deprivation/reoxygenation (OGD/R). We observed changes in behavior and mitochondrial structure. Cell activity, cell respiration, and antioxidant capacity were measured. MAP3K12, p-JNK, p-c-Jun, p-Akt/Akt, PI3K, Bcl-2, and Bax expression were evaluated. RESULTS: I/R or OGD/R significantly increased AK005401 and MAP3K12 expression, further attenuating PI3K/Akt activation, promoting reactive oxygen species generation and causing mitochondrial dysfunction and cell apoptosis, thereby resulting in memory dysfunction. Celastrol increased antioxidant capacity, inhibited cell apoptosis, and improved mitochondrial function, effectively improving learning and memory by downregulating AK005401 and MAP3K12 and activating PI3K/Akt. CONCLUSIONS: The AK005401/MAP3K12 signaling pathway has an important role in I/R-mediated hippocampal injury, and celastrol can potentially reduce or possibly prevent I/R-induced neuronal injury by downregulating AK005401/MAP3K12 signaling.


Assuntos
Regulação para Baixo/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , Memória/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Pharmacol Res ; 165: 105411, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401002

RESUMO

The incidence rate of adenocarcinoma of the esophagogastric junction (AEG) is increasing worldwide with poor prognosis and unclear pathogenesis. Trametes robiniophila Murr. (Huaier), a traditional Chinese medicine has been used in the clinical treatment of a variety of solid tumors, including AEG. However, its anticancer components and molecular mechanisms are still unclear. In our previous studies, we have found that Huaier n-butanol extract (HBE) shows the most potent anticancer activity among different extracts. In the present study, we aimed to investigate the clinical relevance of p-MEK expression in AEG patients and the role of the MEK/ERK signaling pathway in the anti-AEG efficacy of HBE in vitro and in vivo. We herein demonstrate that p-MEK expression in AEG tissues was significantly higher than that in paracancerous tissues and correlated with a poor prognosis in AEG patients. We further found that HBE inhibited the colony formation, migration, and invasion in AEG cell lines in a concentration-dependent manner in vitro. HBE also suppressed the growth of AEG xenograft tumors without causing any host toxicity in vivo. Mechanistically, HBE caused the inactivation of the MEK/ERK signaling pathway by dephosphorylating MEK1 at S298, ERK1 at T202, and ERK2 at T185 and modulating the expression of EMT-related proteins. In summary, our results demonstrate that the high expression of p-MEK may be an independent factor of poor prognosis in patients with AEG. The clinically used anticancer drug Huaier may exert its anti-AEG efficacy by inhibiting the MEK/ERK signaling pathway.


Assuntos
Adenocarcinoma/diagnóstico , Antineoplásicos/uso terapêutico , Misturas Complexas/uso terapêutico , Neoplasias Esofágicas/diagnóstico , Junção Esofagogástrica , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Gástricas/diagnóstico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Junção Esofagogástrica/metabolismo , Humanos , Masculino , Prognóstico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Análise Serial de Tecidos , Trametes , Resultado do Tratamento
17.
J Ethnopharmacol ; 268: 113644, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33264660

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: QingYan Formula has been traditionally used to tonify kidney and benefit essence, and QingYan Formula 70% ethanol extracts (QYFE) showed estrogen-like effect on reproductive system in our previous studies. However, there were no reports of QYFE on bone. AIM OF THE STUDY: This study offered preliminary insight of QYFE into the pharmacodynamics and mechanism of anti-bone osteoporosis in ovariectomized rats. MATERIALS AND METHODS: OVX rats were orally administrated QYFE or estradiol valerate (EV) for 12 weeks. We investigated the pharmacodynamic effects of QYFE on anti-bone loss in OVX rats, and also investigated the role of QYFE in promoting osteogenesis and inhibiting osteoclast differentiation. RESULTS: QYFE administration significantly reduced the degree of high bone turnover, dose-dependently repaired the damaged microstructure of trabecular and cortical bone by Hematoxylin-Eosin (HE) staining and micro-computed tomography (micro-CT), and reduced the number of femur osteoclasts by TRAP staining. QYFE enhanced the proliferation and activity of alkaline phosphatase (ALP), the phosphorylation levels of extracellular regulated kinase (ERK) and Akt in MG-63 cells, which was inhibited by ICI 182 780. Moreover, in RAW264.7 cells, QYFE inhibited osteoclasts differentiation, reduced the number of osteoclasts, decreased the activity of TRAP enzyme during formation, down-regulated the protein expression of p-ERK inhibited by ICI 182 780 and p-Akt not inhibited by ICI 182 780. CONCLUSION: This experiment demonstrated that QYFE had a definite anti-bone loss effect and had potential effect on postmenopausal osteoporosis. The molecular mechanism was related to the activation of estrogen receptor (ER)-dependent mitogen-activated protein kinase kinase (MEK)/ERK and phosphoinositide 3-kinase (PI3K)/Akt signal pathways in osteoblast, down-regulation protein expressions of ER-dependent p-ERK and ER-independent p-Akt in osteoclast.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteoporose Pós-Menopausa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Osteoporose Pós-Menopausa/etiologia , Osteoporose Pós-Menopausa/prevenção & controle , Ovariectomia/efeitos adversos , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley
18.
Molecules ; 25(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297427

RESUMO

Euodia pasteuriana A. Chev. ex Guillaumin, also known as Melicope accedens (Blume) T.G. Hartley, is a herbal medicinal plant native to Vietnam. Although Euodia pasteuriana is used as a traditional medicine to treat a variety of inflammatory diseases, the pharmacological mechanisms related to this plant are unclear. This study aimed to investigate the anti-inflammatory effects of a methanol extract of Euodia pasteuriana leaves (Ep-ME) on the production of inflammatory mediators, the mRNA expression of proinflammatory genes, and inflammatory signaling activities in macrophage cell lines. The results showed that Ep-ME strongly suppressed the release of nitric oxide (NO) in RAW264.7 cells induced with lipopolysaccharide (LPS), pam3CysSerLys4 (Pam3CSK), and polyinosinic-polycytidylic acid (poly I:C) without cytotoxicity. A reverse transcription-polymerase chain reaction further confirmed that Ep-ME suppressed the expression of interleukin 6 (IL-6), matrix metalloproteinase-1 (MMP1), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-3 (MMP3), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase-9 (MMP9) at the transcriptional level and reduced the luciferase activities of activator protein 1 (AP-1) reporter promoters. In addition, immunoblotting analyses of the whole lysate and nuclear fraction, as well as overexpression assays demonstrated that Ep-ME decreased the translocation of c-Jun and suppressed the activation of transforming growth factor beta-activated kinase 1 (TAK1) in the AP-1 signaling pathways. These results imply that Ep-ME could be developed as an anti-inflammatory agent that targets TAK1 in the AP-1 signaling pathway.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Evodia/química , MAP Quinase Quinase Quinases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Animais , Células HEK293 , Humanos , Metanol/química , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7 , Solventes/química
19.
Am J Chin Med ; 48(5): 1103-1120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32668965

RESUMO

Centella asiatica (L.) Urb. (C. asiatica) has been widely treated for inflammation-related diseases in China for thousands of years. While C. asiatica showed relevant effects as traditional medicine, the mechanism of C. asiatica suppressing inflammation has not been thoroughly investigated. Therefore, this study was conducted to reveal the anti-inflammatory mechanism of methanol fraction from C. asiatica (MCA) at the molecular level in murine macrophages. Levels of inflammation-related mediators were observed with treatment of MCA. MCA significantly suppressed nitric oxide production and iNOS expression in RAW 264.7 macrophages. Prostaglandin E2 production was alleviated by MCA via the downregulation of cyclooxygenase-2. MCA treatment also reduced pro-inflammatory tumor necrosis factor-[Formula: see text] and interleukin (IL)-6 levels. LPS/D-GalN-induced acute hepatitis in mouse was alleviated by MCA treatment. In addition, MCA decreased the phosphorylation of inhibitory [Formula: see text]B[Formula: see text] (I[Formula: see text]B[Formula: see text]) at Ser32/36 and thereby blocked I[Formula: see text]B[Formula: see text] degradation. TXY motif phosphorylation in the activation loops of mitogen-activated protein kinases (MAPKs) was also suppressed by MCA treatment. Further investigation revealed that MCA inhibited transforming growth factor-[Formula: see text]-activated kinase 1 (TAK1) phosphorylation and IL-1 receptor-associated kinase (IRAK1) degradation, the upstream kinases activating nuclear factor [Formula: see text]B and MAPKs. Taken together, MCA exhibited anti-inflammatory properties via the downregulation of IRAK1-TAK1 signaling pathways.


Assuntos
Anti-Inflamatórios , Centella/química , Regulação para Baixo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/metabolismo , Animais , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Células RAW 264.7
20.
Microbiol Immunol ; 64(8): 563-569, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32401403

RESUMO

The present study was to demonstrate that the G protein coupled receptors serve as targets for the treatment of autoimmune disease such as rheumatoid arthritis and multiple sclerosis. Rats received pristane at the base of the tail. Affected joints were counted daily. The T cell mediated autoimmune diseases such as pristine-induced arthritis (PIA) and autoimmune encephalomyelitis (EAE) in a rat model were profoundly ameliorated by treatment with the specific G protein couple receptors 120 (GPR120) stimuli omega-3 fatty acids (ω-3 FAs). Our study further revealed that the activation of GPR120 by ω-3 FAs can result in a decrease of phosphorylated transforming growth factor-ß activated kinase 1 (TAK1), and further inhibit the downstream IKKß/I-κB pathway and the terminal NF-κB activation which serves as a mediator of T cell activation. ω-3 Fatty acids exhibited an inhibitory effect on TAK1 by enhancing the association of ß-arrestin2 and TAK1 binding protein 1 (TAB1), thus the disassociation of TAB1 from the TAB1/TAK1 complex renders a limited effect on ß-arrestin2 signaling as an innate immunity regulation. GPR120 is a functional receptor of ω-3 fatty acids in T cell-mediated autoimmune disease compared with its effect on innate immunity.


Assuntos
Artrite Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Ácidos Graxos Ômega-3/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Linfócitos T/imunologia , Animais , Artrite Experimental/induzido quimicamente , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Quinase I-kappa B/metabolismo , Ativação Linfocitária , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Terpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA